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The effective index method (EIM) is a simplified semi-analytical technique for analyzing 2D optical waveguides by
decomposing them into two sequential 1D calculations. A main limitation of conventional EIM is its inability to
account for regions with thickness below the cutoff, where guided modes cannot exist. Furthermore, the accuracy
of the method degrades noticeably for modes near the cutoff. To address these shortcomings, we propose a gen-
eralized effective index method (gEIM) that handles cutoff problems. This cutoff-inclusive gEIM is particularly
advantageous for designing 2D waveguides fabricated on 1D photonic crystals, where modes frequently operate
near cutoff and exhibit significant penetration into external media. The proposed method is implemented as a free
Windows program, which computes both the effective refractive indices and the spatial profiles of 2D waveguide
modes. © 2025 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training,

and similar technologies, are reserved.
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1. INTRODUCTION

Optical waveguide design and analysis are critical for integrated
photonics, enabling diverse applications from telecommu-
nications to sensing. Fast and accurate methods to analyze
waveguide modes and their spatial profiles are essential for
optimizing the design of integrated devices such as lasers,
modulators, and sensors.

Although direct numerical methods such as the finite-
difference time-domain (FDTD) [1], finite-element [2], and
finite-difference eigenmode (FDE) [3] have gained computa-
tional feasibility with advancing hardware, the semi-analytical
effective index method (EIM) retains prominence in prelimi-
nary design phases due to its conceptual simplicity and low
computational cost.

The EIM was originally introduced by Knox and Toulios [4]
for millimeter-wave structures; however, its most widespread
applications emerged in integrated optics [5], where it has been
utilized to model various types of 2D optical waveguides. The
primary strength of the EIM lies in its intuitive framework,
which avoids computationally intensive numerical calculations
while providing reasonable estimates for propagation constants
and mode profiles. Its efficiency makes it particularly valuable
for rapid early-stage prototyping and educational purposes.

However, the conventional EIM has two major limitations.
First, it fails in regions where the waveguide thickness is below
the cutoff, as the absence of guided modes precludes defining
effective indices in such regions. Even attempts to approximate
these indices using substrate or cladding refractive indices yield
unsatisfactory results and serve only as a palliative. Second, the

method’s accuracy deteriorates significantly already for modes
near cutoff, where evanescent fields extend deeply into the
cladding or substrate [6].

Significant efforts have been devoted to address EIM’s short-
comings and enhancing its accuracy, as evidenced by numerous
studies [7–13]. A comprehensive analysis and critical compari-
son of numerical and approximate approaches, including these
advancements, are provided in [14].

These limitations become particularly critical in applications
where a 2D waveguide is designed on top of a 1D multilayer
structure, which operates near cutoff to allow deep penetration
of optical mode intensity into external media [15].

In this work, we present the cutoff-inclusive generalized effec-
tive index method (gEIM), which overcomes the traditional
EIM’s limitations without compromising its computational
efficiency. By redefining the effective index for sub-cutoff
regions, gEIM enables accurate modeling of waveguides on 1D
photonic crystals or on other substrates. The method is imple-
mented in a user-friendly Windows application [16], providing
both effective indices and field distributions, thereby bridging
the gap between analytical simplicity and rigorous numerical
accuracy.

2. METHODS

A. Effective Index Method

The traditional EIM concept is illustrated in Fig. 1. The method
determines the effective refractive index Neff of a 2D waveguide
by solving two sequential 1D problems: vertical confinement
and lateral guidance. At the first stage, the vertical confinement
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Fig. 1. Schematic of the effective index method. The first step: for
each lateral slice, the effective refractive index neff.i is computed by
solving a 1D mode equation (along x axis) under the assumption that
wi =∞. The corresponding mode wavevectors are ki = neff.iω/c .
The second step: the 2D waveguide mode is obtained by solving the
second 1D problem (along y axis, top view) with the precomputed
indices neff.i , yielding the global effective index of the 2D waveguide
mode Neff.

is resolved, after which the lateral guidance is modeled using the
effective indices obtained in the first stage.

As shown in Fig. 1, during the first stage, the structure is
divided into lateral slices of widthwi along the y direction. For
each slice, the effective index neff.i of a slab waveguide mode in
the i th slice is calculated under the assumption that the slice
extends infinitely in the lateral direction (i.e.,wi =∞).

Then, at the second stage, the structure is analyzed from a
top–down perspective (see the top plane in Fig. 1), transform-
ing it into the second 1D problem, where each lateral slice is
assigned the effective refractive index neff.i . Solving this 1D
problem yields the 2D waveguide modes of the original struc-
ture, propagated in z direction and characterized by the effective
refractive indices Neff.

The polarization dependence in the EIM is accounted for
by inverting the polarization treatment across its two stages.
For s -polarized modes (electric field parallel to the layer inter-
faces), solutions for s -polarization are applied in the first stage,
while solutions for p-polarization are applied in the second
stage. Conversely, for p-polarized modes, the sequence is
reversed: solutions for p-polarization are applied in the first
stage, followed by s -polarization solutions in the second stage.

B. EIM near Cutoff: Limitations and Case Study

To demonstrate the limitations of the standard EIM and eluci-
date the physical causes behind these limitations, we apply the
standard EIM to analyze the rib waveguide structure proposed
in [15]. The structure is represented as

substrate/(L H)5L ′′H L ′i/vacuum,

where L is the SiO2 layer (thickness dL = 170.73 nm), H is the
TiO2 layer (thickness dH = 86.46 nm), L ′′ is the extended SiO2

layer (thickness dL ′′ = 304 nm), and L ′i is the final SiO2 layer

002 091 081 071 061
1

1.002

1.004

1.006

EIM
FDE
gEIM

Fig. 2. Effective refractive index Neff of the 2D waveguide as a func-
tion of the final layer thickness d0;2 in the lateral slices, calculated using
the standard EIM, FDE, and generalized EIM. The dashed line marks
the cutoff thickness.

(thickness d1 = 207 nm for the central slice and d0,2 = 182 nm
for the lateral slices). The refractive indices (RIs) of SiO2 and
TiO2 at λ= 850 nm are 1.4666 and 2.3137, respectively. The
substrate is glass (with a refractive index of∼1.5), but the pho-
tonic bandgap of the (L H)5 stack isolates the surface mode
from substrate leakage, making the substrate’s index irrelevant.
The ability to excite surface modes with effective indices neff

close to 1 is the primary motivation for using a 1D photonic
crystal here.

This structure sustains a mode near cutoff in the central slice
(neff.1 = 1.0054, calculated for w1 =∞), while no guided
modes exist in the lateral slices. The effective index in the central
slice can be calculated using the impedance approach [16–18]
or by other methods used for finding modes in multilayer wave-
guides (see [19] and references therein). The cutoff thickness for
the final layer is dcutoff ' 193 nm, below which guided modes
cannot exist. Thus, the central slice (d1 = 207 nm) operates
above cutoff, supporting guided modes, whereas the lateral slices
(d0;2 = 182 nm) are sub-cutoff, where no guided modes are
present. The design objective is to confine a waveguide mode
within the rib (w1 = 3 µm) that exhibits strong evanescent field
penetration into the vacuum cladding, enabling interaction
with cold rubidium atoms above the waveguide.

The results of EIM calculations for the effective refractive
indices Neff of the analyzed structure are depicted as blue squares
in Fig. 2. The figure illustrates Neff as a function of the final
layer thicknesses in the lateral slices (d0;2), while the final layer
thickness of the central slice remains fixed at d1 = 207 nm. For
sub-cutoff thicknesses, where guided modes are absent in the
lateral slices, the cladding refractive index (RI of vacuum in
this case) is employed as the effective indices in these regions
(i.e., neff.0;2 = 1.0 for d0;2 < 193 nm—this is a typical palliative
in EIM).

Reference data, serving as a standard, were obtained using the
FDE solver from the Lumerical Inc.’s MODE software (version
7.21.3262, 2023 R1). These reference points are depicted as
black circles in Fig. 2. A significant deviation between standard
EIM results and reference data is observed in the sub-cutoff
regime. Furthermore, discrepancies persist even near the cutoff
region, specifically for d0;2 ∼ 199 . . . 194 nm.
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C. Generalized Effective Index Method

1. Physical Causes of EIMFailures

To elucidate the physical origin of the discrepancies observed
in Fig. 2, we analyze the field intensity profiles in a lateral slice
operating near cutoff (for d0 = 195 nm, neff.0 = 1.00014) and
compare them with the primary mode profile in the central slice
(for d1 = 207 nm, neff.1 = 1.0054). As revealed in Fig. 3, even
small variations in the thickness of the final layer near cutoff
induce significant alterations in the field profiles. This behavior
arises from a sharp increase of the evanescent field penetration
depth into the external medium, while the lateral waveguides
approach cutoff conditions (neff.0→ 1.0).

Consequently, the primary field from the central slice will
perceive the dielectric permittivity distribution within the lat-
eral multilayer structure (ε0(x )) differently than the local field
within the lateral region itself. It should be noted that this behav-
ior never occurs at conventional three-dimensional interfaces,
where identical intensity profiles on both sides of the boundary
are assumed (e.g., plane waves in the Fresnel framework).

Thus, in the studied system, the effective refractive indices of
i th (non-primary) slices, neff.i , must be corrected (renormalized)
to ncorr.eff.i prior to the second stage of the EIM to account for
the interplay between the central mode I1(x ) and the dielectric
permittivity distribution in the lateral regions εi (x ).

2. Modification of EffectiveRefractive Indices in Lateral
Slices

The equations of the weighted index method [20] will be
implemented to calculate changes in the lateral effective refrac-
tive indices from the “point of view” of the mode intensity
distribution in the central slice.

The weighted index method provides an approximation for
modal refractive index neff by relating it to the dielectric permit-
tivity distribution ε(x ) of individual layers via a weighted spatial
average, where the weighting factor corresponds to the optical
mode intensity profile across the layers:

n2
eff = f (ε, I )'

∫
ε(x )I (x )dx∫

I (x )dx
. (1)

In fact, as noted in [20], an additional term—dependent on
the mode’s electric field and its second derivative with respect
to the spatial coordinate—has to be added to the right-hand
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Fig. 3. Vertical 1D intensity profiles I (x ) obtained during the first
stage of the EIM for two final layer thicknesses: d1 = 207 nm (central
slice, solid red line) and d0 = 195 nm (lateral slice, dotted blue line).
Corresponding dielectric permittivity distributions ε1(x ) and ε0(x )
are shown as a solid magenta line and a dashed cyan line, respectively.

side of Eq. (1) to ensure mathematical rigor. In our further
considerations, however, this term will be embedded within the
functional f (ε, I ), manifesting itself as an implicit dependence
on I (x ), since we focus exclusively on the variation of neff with
respect to ε(x ) and I (x ).

The variation in the effective index is expressed as

1n2
eff '

∂ f (ε, I )
∂ε

1ε+
∂ f (ε, I )
∂ I

1I , (2)

where the partial derivatives reflect the sensitivity of neff to per-
turbations in spatial distribution of dielectric permittivity ε(x )
and mode intensity I (x ).

The corrected (renormalized) effective index ncorr.eff.i for the
i th lateral slice is derived from Eq. (2) by substituting the intrin-
sic mode intensity Ii (x ) with the primary mode intensity I1(x )
from the central slice in the weighting:

n2
corr.eff.i − n2

eff.i '
∂ f (εi , Ii)

∂ Ii
(I1 − Ii ), (3)

where the first term from Eq. (2) vanishes, as the dielectric
permittivity distribution remains unchanged, and 1ε= 0.
Physically, this correction accounts for how the central mode’s
field “sees” the dielectric environment in the lateral slices, which
differs from the local mode’s perspective in those slices.

To estimate the partial derivative in Eq. (3) and eliminate
the dependence on the intensity distribution in lateral slices,
Ii (x )—which may be undefined for sub-cutoff slices, where
guided modes are absent—we introduce the following auxiliary
expressions:

n2
eff.i − n2

eff.1 '
∂ f (ε1, I1)

∂ε1
1ε+

∂ f (ε1, I1)

∂ I1
(Ii − I1), (4)

where1ε= εi (x )− ε1(x ). Consequently,

n2
eff.i ' n2

eff.1 +

∫
εi (x )I1(x )dx∫

I1(x )dx
−

∫
ε1(x )I1(x )dx∫

I1(x )dx

+
∂ f (ε1, I1)

∂ I1
(Ii − I1). (5)

Here, in Eqs. (4) and (5), we utilize expression (2) to relate the
modal effective index of a lateral slice, neff.i , to that of the pri-
mary slice, neff.1. Substituting neff.i from Eq. (5) into Eq. (3) and
assuming the approximation

∂ f (ε1, I1)

∂ I1
≈
∂ f (εi , Ii )

∂ Ii
, (6)

we obtain

n2
corr.eff.i ≈ n2

eff.1 +

∫
εi (x )I1(x )dx∫

I1(x )dx
−

∫
ε1(x )I1(x )dx∫

I1(x )dx
, (7)

which does not depend on the intensity distribution in the lat-
eral slices, Ii (x ), and can be applied for all non-primary slices.

3. Implementation of gEIM

Equation (7) of the corrected modal effective index for non-
primary slices is the main improvement of gEIM that addresses
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both limitations of the standard EIM. It depends only on the
intensity distribution I1(x ) in the primary slice and allows to
compute modal effective indices for all lateral slices—including
sub-cutoff regions—without requiring guided mode solutions
in these regions (using only distributions of their dielectric
permittivities).

For 2D structures with more than three slices, the primary
slice is chosen by maximizing the product of the modal field
intensity within its highest intensity layer and the slice width:

max
i

[
max

x
(Ii (x )) ·wi

]
. (8)

This criterion ensures that the slice dominating the optical
mode’s energy distribution is prioritized, enhancing the fidelity
of gEIM calculations for multi-slice geometries.

3. RESULTS

A. Practical Implementation in the Program

An implementation of the gEIM approach described in this
paper is available as a free Windows program in [16,18]. Both
the program interface and numerical calculations were imple-
mented using the C# programming language within the .NET 8
framework. The program is distributed as a self-contained single
file, which includes all necessary components, such as the .NET
libraries and target runtime libraries. It is isolated from other
.NET applications and does not rely on a locally installed shared
runtime. The executable file, |1DPC4all.exe|, runs on
any 64-bit Windows system with Windows 7 or later. Users are
not required to download or install any versions of .NET.

B. Computations of Neff for 2D Waveguides

The effective refractive indices Neff of the analyzed waveguide
structure, computed via the generalized effective index method
in the program [16], are plotted as red diamonds in Fig. 2,
demonstrating improved agreement with reference numerical
data compared to conventional EIM results (blue squares).
Thus, replacing all lateral effective indices neff.i with their renor-
malized counterparts ncorr.eff.i from Eq. (7), before solving the
lateral guidance problem (second stage of EIM), resolves both
fundamental limitations of conventional EIM: inaccuracies
near the cutoff and failure in sub-cutoff regions.

C. Optical Field Intensity Visualization in 2D
Waveguides

The two-dimensional optical field intensity distribution is
reconstructed by multiplying the 1D intensity profiles along
the vertical (x ) and lateral (y ) directions, obtained during the
first and second stages of the conventional EIM, respectively.
This approach preserves the mathematical simplicity of EIM
while enabling visualization of the full 2D mode profile. As
illustrated in Fig. 4, the reconstructed 2D intensity distribution
for the studied waveguide structure exhibits confinement in the
central rib region (w1 = 3 µm) and significant evanescent tail
penetration into the vacuum cladding—a critical feature for
applications involving interactions of optical fields with cold
atoms.

Fig. 4. Full 2D intensity profile I (x , y ) of the fundamental mode
in the analyzed waveguide structure, reconstructed via the gEIM by
multiplying the orthogonal 1D solutions.

4. DISCUSSION

The development of the effective index method has a long
history and likely traces its origins to the Marcatili’s method,
which was introduced for approximating modes in rectan-
gular waveguides [21]. In subsequent refinements of these
approaches, the effective indices in the lateral regions are often
approximated using the expression (in the present notation):
n∗2eff.0;2 = ε0;2 − γ (ε1 − n2

eff.1), where the parameter γ is
empirically fitted to specific perturbation correction models
[6,9,12,13]. These studies highlight that setting γ = 0 recov-
ers the conventional EIM, whereas γ = 1 corresponds to the
Marcatili’s method:

n∗2eff.0;2 = n2
eff.1 + ε0;2 − ε1. (9)

By comparing Eq. (7) with Eq. (9), we observe that gEIM repre-
sents the Marcatili’s model as a special case when the dielectric
permittivity contrast spatially correlates with the intensity
profile of the central mode. While Marcatili’s approximation
may suffice for simple rectangular rod waveguides, it becomes
inadequate in more challenging scenarios, such as near-cutoff
regimes or complex geometries like the multilayer structure
examined in this study.

In contrast, the gEIM framework overcomes these short-
comings by explicitly accounting for the interplay between the
central mode’s intensity profile and the lateral dielectric profiles,
as captured in Eq. (7). This enhancement enables gEIM to
provide a more accurate and versatile approach for modeling
a wide range of waveguide configurations. The advancements
introduced by gEIM not only improve the precision of mode
calculations, but also extend the applicability of the effective
index approach to sophisticated photonic structures, facilitating
the design and analysis of advanced integrated optical devices.

5. CONCLUSION

The generalized effective index method (gEIM), while inher-
ently approximate, provides a rapid and intuitive framework
for designing integrated photonic devices, particularly during
the initial stages of engineering. By resolving key limitations
of conventional EIM—such as inaccuracies near cutoff and
failures in sub-cutoff regions — gEIM significantly expands
the range of waveguide geometries that can be effectively mod-
eled, including multilayer and near-cutoff structures, bridging
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the accuracy gap between semi-analytical methods and full
numerical simulations. We anticipate that gEIM will serve as
a versatile tool for analyzing complex photonic systems where
traditional EIM proves inadequate, such as photonic crystal
waveguides and sensing platforms requiring strong evanescent
field interactions.
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